• 5 Posts
  • 32 Comments
Joined 3 days ago
cake
Cake day: October 23rd, 2024

help-circle







  • H2 only FC ebikes are not well developed or popular yet. Drones with FCs are actively developed as density/weight is a huge factor for range. Very small fuel cells, 500w or 1000w have applications in powering a home (with solar supplement) because they can run 24/7 and charge batteries. Hooking up torches or burners to these cannisters can also provide clean indoor cooking or heating a box of sand/water in a room.

    For an ebike, it is touring/camping applications that this really enables. Charging a battery when you need extended range, and it becomes worth the extra weight. Even a 100w fuel cell slow charging a spare battery while riding is big range extension, and provides overnight full charge. Combustion cooking and heating is fine for high supplementary energy.

    A H2 economy would have these cartridges in similar locations to swappable propane tanks.

    Now they just need to solve the energy consumption and cost parity questions surrounding green hydrogen.

    Toyota research and products are ahead of their time relative to cheap green H2. This is an advance over using 300bar “paintball tanks” by going to 525bar, and it looks a bit like an apple product design. Needs far more electrolysis production capacity and deployments. The global project pipeline is long though, so we should get there. Current focus is on large scale electrolyzers with specific offtakers which is slow, but a step towards broader distribution.











  • Green H2 does not benefit oil industry at all. It is only basis for a H2 economy because such an economy has to be 100% clean (FF derived H2 has less net energy content than original FF), and the essential rationale for an H2 economy is one where enough renewables to provide 100% of electricity every day needs to overproduce on most days, and H2 electrolysis is an automated way of providing transportable/exportable fuel that converts to electricity at high enough efficiency. The transportation cost advantage of H2 over electric transmission is enough to overcome the efficiency loss of creating it when the electric energy is cheap enough. 2-4c/kwh is enough for cheaper energy delivery by H2.

    While Toyota has made great research/development in fuel cells, I agree that they have had a “don’t buy an EV until you see our next model of the Mirai”, and oil companies bs about “blue H2” potential as path to fish for more subsidies, the anti-H2 fan boys are actually EV/battery investors. H2 economy requires batteries, and does have vehicle applications, but the main reason for it is that it is only path to 100% renewable energy.

    The good match for wind, and offshore wind especially, is that many places achieve full electric demand coverage from solar alone on some days. On those days, adding batteries with more solar could achieve solar coverage over 24 hours. If it is windy at the same time, no wind energy would get sold those days, and then no additional renewables would be economic in that region, and higher demand days would not get covered by renewables. H2 is path for, wind especially, to sell/monetize all of their energy produced, but also bypass, for all renewables, grid transmission bottlenecks that monopolies don’t mind being bottlenecks if it increases their discretionary power in providing energy permission.