- cross-posted to:
- [email protected]
- cross-posted to:
- [email protected]
First U.S. nuclear reactor built from scratch in decades enters commercial operation in Georgia::ATLANTA — A new reactor at a nuclear power plant in Georgia has entered commercial operation, becoming the first new American reactor built from scratch in decades.
You’re conflating leftover dregs of Pu-239 (about a 10-15% boost in energy per fuel input) with non-fissile material like U238. Breeder reactors required to use the second have never been used commercially in breeding mode.
You’ve either fallen for or are intentionally spreading a lie.
What lie am I spreading? Conventional Light Water Reactor Nuclear Fuel (5-6% U-235 w/t%) can be recycled. This can be done even without using breeder reactors which operate through fast fission of U-235
Yes the plutonium can be stripped out along with the other transuranics, and it does pose a proliferation risk (separate issue), but it definitely can be recycled. France reprocesses their fuel.
Edit: typo correction
Ah. So intentional then. You’re trying to pretend extracting the <0.7% left over U235 and Pu239 (for a 10-15% increase in U235 fuel economy) is somehow fissioning U238.
I don’t understand what you’re trying to say here. Reprocessed fuel does not imply that we’re now fissioning U-238. That takes place in a completely different energy regime (fast fission vs. thermal). Light Water Reactors and fast reactors operate differently, with different fuels. LWRs in commercial operation use slightly enriched U-235. There is no fissioning of U-238 other than the very small amount of spontaneous fission which is negligible compared to contributions from thermal fission in an LWR. The Six Factor formula governs criticality reactions, and these terms differ for both reactor types. The nuclear cross sections are fundamentally different between these energy regimes.
Reprocessed fuel is what it implies, recycled processed LWR fuel, stripped of the fission products that built up as the fuel underwent burnup in the core. If this were some sort of pretend activity then I guess the entire reprocessing back end of the nuclear fuel industry is fake.
I don’t appreciate the personal attacks, so if you have nothing constructive to say, good day to you sir slash madam.
You’re still trying to spread the “90% of nuclear waste is recyclable” myth, but now you’ve retreated to the bailey of “getting 10% more energy is technically getting something out of it so saying it is recyclable is totally true even though this has no impact on mining or the dangerous parts of waste!!” You’re also pretending it magically makes the Pu240 and Am241 go away.
Reprocessing yields a small fraction of leftover fissile material. It is in no way characterisable as recycling.
The strategy is a very boring and tiresome propaganda move that is part of the Duke Energy and Rosatom astroturfing playbook. As is the “who me? I couldn’t possibly be slyly trying to imply nuclear waste is actually fuel” act.
They never said that it’s 90% recyclable. They said it can be recycled ‘to an extent’. You’re projecting.
The myth they are dog whistling is just that. You can see it repeated everywhere the topic comes up and where they tried to conflate it with breeding. The method of lying is called paltering.
In reality reprocessing has no significant impact other than leaking Cs, Kr and Tc everywhere, increasing the volume of waste so it’s harderto handle and raising costs.
U-238 is largely stable and has the consistency of metal, making it easy to store or sequester away. Most natural deposits of Uranium are U-238.
Additionally you can make a breeder reactor that bombards U-238 to make U-239 which has a half life of 23+ minutes and decays into Plutonium-239 which can be used in nuclear power generation.
Not sure what you’re even trying to say with the first bit. It’s completely irrelevant
No breeder reactor has ever produced enough fuel to run on and extracted it. Breeder programs get as far as half of a proof of concept and then run out of funding on the actually hard part.