I’m setting up FDE and wonders which one is better. “LVM over LUKS” or “LUKS over LVM”? Or something else? Does one is definitely better then the other? What are your preference?

Thanks.

  • TMP_NKcYUEoM7kXg4qYe@lemmy.world
    link
    fedilink
    arrow-up
    2
    arrow-down
    2
    ·
    edit-2
    8 months ago

    From the info I’ve gathered, it seems that LUKS over LVM is the “proper” way as ideally you’d only want to encrypt swap, /tmp and /var. (/tmp and /var are places for temporary files, ie. opening a .zip archive. Swap is just RAM on your hard drive, so a place where your passwords could be stored) Encrypting the root (equivalent of “program files” in Windows) won’t make your system more secure, just slower. (If you live in a place where you need to keep the list of your installed apps private, you’d probably be fricced by using encryption anyways.) Home directory should obviously be encrypted ~~but for the best performance you should use file level encryption instead of block level. ~~ edit: Do your own research on the performance, a reply claims otherwise, though leaving root partition unencrypted obviously increases R/W speed.

    The thing is that setting it up this way is pretty hard so distros generally use 2 easier methods to setup encryption. Either encrypt the whole disk (LVM over LUKS) or encrypt only the home directory. I wonder whether the latter is secure enough though. Mint for example does not explicitly state that swap, /var and /tmp are encrypted when you select “encrypt home directory” but on Cinnamon there is not hibernation option so there is a chance that Swap is encrypted, just with a one-time password, which gets generated on boot and deleted after shutdown. <— citation needed…edit: I’ve just tried hibernating in Mint without FDE and it didn’t work, you just get a new session after resuming, so that’s good.

    Relevant article: https://www.linuxinsider.com/story/the-case-against-full-disk-encryption-86774.html

    also: https://wiki.archlinux.org/title/Data-at-rest_encryption#Block_device_vs_stacked_filesystem_encryption

    • umami_wasabi@lemmy.mlOP
      link
      fedilink
      arrow-up
      4
      ·
      9 months ago

      I though FDE is to thwart physical access to exfiltrate and or recover data. Making the root partition unencrypted surely will boost performance but I feel like this opens up an additional avenue for an attacker to exploit and defeat the purpose of doing FDE? It isn’t just making “installed apps private” but literally replace some binaries with a backdoored version of it with then enables access to decrypted data.

      • TMP_NKcYUEoM7kXg4qYe@lemmy.world
        link
        fedilink
        arrow-up
        1
        arrow-down
        1
        ·
        edit-2
        9 months ago

        If an attacker has physical access to your device, you should not use the device afterwards, ever. There are some mitigations like Secure Boot and Heads OS, but they only slow down the attacker. Given enough time, you cannot stop him. Heads OS is pretty much for giving your laptop to airport security temporary and Secure Boot has been hacked in a minute. Although that was using TMP outside of the CPU, I would not trust Secure Boot with TMP 2.0 for anything other than a quick customs check either.

        Using FDE as a protection against physical attacks is just a false sense of security. Veracrypt for example go as far as to say that secure boot is false sense of security.

        For maximum paranoia there is a use for FDE, though. If you install a crappy app that saves data outside of RAM, /home, /var and /tmp, the data won’t get leaked. Though that would be a massive security issue because most linux computers are servers which cannot use FDE.

        • koper@feddit.nl
          link
          fedilink
          arrow-up
          1
          ·
          edit-2
          9 months ago

          The most common physical attacks will be you misplacing your device or some friend/burglar/cop taking it. FDE works great in those scenarios.

          • TMP_NKcYUEoM7kXg4qYe@lemmy.world
            link
            fedilink
            arrow-up
            1
            ·
            8 months ago

            Not really, rewriting the boot sector with your malware can be scripted so even the average burglar could use it. Using a previously stolen laptop without reflashing the firmware or something similar isn’t worth the risk imo.

        • umami_wasabi@lemmy.mlOP
          link
          fedilink
          arrow-up
          1
          ·
          edit-2
          9 months ago

          For secure boot bypasses I could only find BlackLotus is the only one capable to do this. I would like to have more details to support the claim “Secure Boot has been hacked in a minute.” Also, I would like the explanation on secure boot is a false sense of security and points to suport such claim as BlackLotus is the only publicly known malware to bypass secure boot.

          However, I do firmly believe that there ia no reason that servers can’t use FDE as they are no differ than other typical computer.

          EDIT: forgot the “boot” for secure boot

          • Max-P@lemmy.max-p.me
            link
            fedilink
            arrow-up
            1
            ·
            9 months ago

            TPM has been bypassed. Researches found a lot of laptops where you can just attach wires to the TPM communication lines and you can just listen and wait for the TPM to spit out the key.

            It’s a hardware attack so game over. But still worth doing especially on servers and desktops because then it’s still much more of a skilled attack than someone just stealing the drives. Especially servers with their front drive bays you can literally just pop the drive. And if the drive dies and you can’t erase it, it’s fine, you can throw it away and not care because it’s FDE so you can just throw away the keys.

          • Bitrot@lemmy.sdf.org
            link
            fedilink
            English
            arrow-up
            1
            ·
            edit-2
            9 months ago

            I think people tend to get hung up on where you store the key material for a server. Hardware token and TPM being two options that are less secure, but network bound disk encryption is supported as well as a combination. So you could have it require the network key as well as the matching PCRs from the TPM for the proper software load before it will unseal.

          • TMP_NKcYUEoM7kXg4qYe@lemmy.world
            link
            fedilink
            arrow-up
            1
            ·
            8 months ago

            The secure boot vulnerability was shown on a lenovo laptop. I’ve found https://www.welivesecurity.com/2022/04/19/when-secure-isnt-secure-uefi-vulnerabilities-lenovo-consumer-laptops/, but I’m not sure whether it’s the same thing I was talking about. The attack abused the fact that the TPM chip was outside the CPU so it was possible to read the keys in plain text by just putting a clip on the chip. The laptops in the ESET article seem fairly new so I would expect them to have TPM inside the CPU.

            I recommend reading “threat model” page on Heads OS’ website. Secure boot can be disabled in the UEFI settings which can be accessed by unplugging the CMOS battery to reset the UEFI password. Undoing a few screws takes a few seconds so the bottleneck would be how fast you can upload your fake login screen onto the drive.

            Servers can use FDE obviously but using them becomes highly inconvenient if you enable that. In order to boot you need to decrypt the drive but how are going to connect to the server if it hasn’t booted yet? One solution is to only boot the server when you have local access. The issue rises when your server crashes. Alternatively you can either start sshd early in the boot process at which point it isn’t really FDE or have some kind of KVM which just shifts the issue to a different device.

    • Max-P@lemmy.max-p.me
      link
      fedilink
      arrow-up
      3
      ·
      9 months ago

      If you’re not careful /etc can also contain passwords and other sensitive files. My WiFi password is there for example because it needs to be in the wpa_supplicant config file. On servers that’s TLS certificates and keys.

      In my experience block level is faster, and less of a hassle, and can support hibernation properly. Also much easier if you want just one big partition to not waste space on separate root home and var.

      • TMP_NKcYUEoM7kXg4qYe@lemmy.world
        link
        fedilink
        arrow-up
        1
        ·
        8 months ago

        Thanks for the correction. I would also like to add that /root is probably also something that should be encrypted, you won’t have to shred your root account’s bash_history after accidentally typing your password into the root shell.

        I didn’t clarify this in the original comment but imo unless your distro specifically offers the option to partition a drive the way I described it, it’s not worth it. (as far as I know, no distro offers this kind of encryption)