• rockstarpirate@lemmy.world
    link
    fedilink
    arrow-up
    9
    ·
    2 years ago

    Serious question: Can somebody explain to me, if an infinite number of universes exist, why do we assume that every possibility must exist within the set? Like, why can’t it be an infinite number of universes in which OP does not win the lottery?

    • admiralpone@lemmy.world
      link
      fedilink
      arrow-up
      10
      ·
      2 years ago

      Your intuition is correct here. OP is wrong. An infinite set of branches of the wavefunction does not necessarily imply that everything you can imagine must happen somewhere in that wavefunction.

    • There1snospoon7491@lemmy.world
      link
      fedilink
      arrow-up
      8
      ·
      2 years ago

      Fun fact: you can have multiple sets of infinities and even though all are infinite, that does not mean they are all equal. See Georg Cantor.

        • There1snospoon7491@lemmy.world
          link
          fedilink
          arrow-up
          4
          ·
          2 years ago

          I mean, Cantor said so, not I. But an easy example

          Imagine a list of all whole numbers. 1, 2, 3 on up and up. Obviously this list is infinite - numbers do not end.

          Now imagine a list of all real numbers - that is, all numbers plus their decimal amounts between each while number. 1, 1.1, 1.11, 1.12, 2, 2.1, and so on. This list is also infinite - but it is also inherently larger than the infinite list of only whole numbers. It has more numbers.

          • Ech@lemm.ee
            link
            fedilink
            arrow-up
            1
            ·
            2 years ago

            That’s like saying am infinite number of feathers is lighter than an infinite number of bricks. Neither is heavier than the other - they’re both infinitely heavy.

            • There1snospoon7491@lemmy.world
              link
              fedilink
              arrow-up
              2
              ·
              2 years ago

              You’re measuring a quality of the two objects, not the quantity, which might make a difference. I’m just sharing something I learned that I think is cool:)

              • Ech@lemm.ee
                link
                fedilink
                arrow-up
                1
                ·
                2 years ago

                It’s an interesting concept, for sure, don’t get me wrong. It’s intuitive to see the scenario of “different infinities” as being different sizes and believe it makes sense, but it doesn’t pan out. It’s weird because infinity is used in regards to numbers, but it’s not a number itself. It’s more the antithesis of a number - it’s everything. It’s a tool we use to interact with the concept of something that specifically can’t be measured. Measuring implies limits or bounds, but something that is endless has neither.

                So saying there’s an infinite number of this or that is more akin to the “riddle” of if 100lbs of feathers weighs less than 100lbs of bricks. The trick is they both weigh the same, even though our brain might not intuitively realize that, just like infinities. Ultimately, it’d be more accurate to say there’s infinities within infinities, which is another tricky concept all on its own.

          • rockstarpirate@lemmy.world
            link
            fedilink
            arrow-up
            1
            ·
            2 years ago

            I think Cantor would say you need a proof for that. And I think he would say you can prove it via generating a new real number by going down your set of real numbers and taking the first digit from the first number, the second from the second, third from third, etc. Then you run a transformation on it, for example every number other than 1 becomes 1 and every 1 becomes 2. Then you know that the number you’ve created can’t be first in the set because its first digit doesn’t match, and it can’t be the second number because the second number doesn’t match, etc to infinity. And therefore, if you map your set of whole numbers to your set of real numbers, you’ve discovered a real number that can’t be mapped to a whole number because it can’t be at any position in the set.

            Some will say this proves that infinities can be of unequal sizes. Some will more accurately say this shows that uncountable infinities are larger than countable infinities. But the problem I have with it is this: that we begin with the assumption of a set of all real numbers, but then we prove that not all real numbers are contained in the set of all real numbers. We know this because the number we generated literally can not be at any position in the set. This is a paradox. The number is not in the set, therefore we don’t need it to map to a member of the other set. Yet it is a real number and therefore must be in the set. And yet we proved it can’t be in the set.

            I’m uncomfortable making inferences based on this type of information. But I’m also not a mathematician. My goal isn’t to start an argument. Maybe somebody who’s better at math can explain it to me better.

    • Ech@lemm.ee
      link
      fedilink
      arrow-up
      2
      ·
      2 years ago

      Murphy’s Law (edited a bit by the Nolan brothers)- If something can happen, it will happen. On the scale of infinity, this is particularly inevitable.

        • Ech@lemm.ee
          link
          fedilink
          arrow-up
          1
          ·
          2 years ago

          Umm…logic? Statistics? If something has a chance of happening, even the smallest possible chance conceivable, it will happen given infinite time and iteration.

          • rockstarpirate@lemmy.world
            link
            fedilink
            arrow-up
            2
            ·
            2 years ago

            Well, but if there are other “me”s, then there must be some set of common events that must occur in each universe containing a copy of me in order for that individual to qualify as me. In that case, isn’t it entirely possible that those particular things that must be in place preclude certain other possibilities that make it such that there is no chance that some otherwise conceivable events could occur?

            • Ech@lemm.ee
              link
              fedilink
              arrow-up
              1
              ·
              2 years ago

              Sure, and that would fall under “can’t happen, won’t happen”.

              And if we’re getting that philosophical about it, what qualifies as “you”? Arguably, that’s just you, since you represent a single culmination of events and possibilities. All other variations would technically be someone else with a mostly similar history. You could consider a “spectrum” of you’s, but again, where is the cutoff? Trying to define that gets pretty tricky.

              • rockstarpirate@lemmy.world
                link
                fedilink
                arrow-up
                1
                ·
                2 years ago

                I agree with all of that. But the bigger point is that there are things that can’t/won’t happen that we can’t predict, so this means we can’t assume that “there must be a universe in which X happens to me”.

                • Ech@lemm.ee
                  link
                  fedilink
                  arrow-up
                  1
                  ·
                  2 years ago

                  In respect to the lottery, every (lottery valid) combination has a chance of happening and we are assuming infinite variation, so if someone buys a lotto ticket for say “1 2 3 4 5”, that will be the picked numbers in at least one variation.

                  • rockstarpirate@lemmy.world
                    link
                    fedilink
                    arrow-up
                    1
                    ·
                    2 years ago

                    Ok, that makes sense. I would agree that for any truly random circumstance, when given infinite iterations, all possible combinations will eventually occur.