• Maharashtra@lemmy.world
    link
    fedilink
    arrow-up
    43
    arrow-down
    1
    ·
    2 years ago

    Yes, but you’re not applying the hypothesis to the fullest.

    If it’s correct, and the number of worlds is infinite, then some of you buy tickets even when you don’t. And they win. So, you don’t actually need to make the move at all. 😎

    • Flying Squid@lemmy.world
      link
      fedilink
      arrow-up
      6
      ·
      2 years ago

      If it’s truly an infinite number of worlds, in some of them you win the lottery without even buying a ticket.

    • kromem@lemmy.world
      link
      fedilink
      arrow-up
      5
      ·
      2 years ago

      In a literal sense, assuming the theory that consciousness in some way depends on quantum processes is correct, this is the proper interpretation.

      Lottery balls being picked seems very unlikely to be dependent on a superposition.

      But (a) choosing to buy a ticket, and (b) what numbers you choose both plausibly could if the above assumption is correct.

      So not only would other yous be buying tickets in other worlds, they’d be buying many different numbers in many different worlds, even if the you in this world wasn’t buying any tickets at all.

      And even if the you in this world was now so strongly against the lottery that no future ‘branch’ of you would ever buy a ticket regardless of the degree to which a superposition might influence your decisions, the many yous from childhood would be so variably influenced in different ways from others around you from birth to now that there might be other parallel yous who superstitiously buy every ticket.

      Even in terms of number selection - if the you here might choose the birthdate of a spouse or children as the numbers, yous in other worlds might have different spouses or children to choose numbers based on.

      Many worlds is a rather boring theory unless also entertaining it with the notion that - like how birds navigate - our decision making somehow depends on quantum effects.