The most steel-intensive power source – by far – is the modern wind turbine. The steel intensity of a wind turbine depends on its size. A single, large wind turbine requires significantly more steel per megawatt of installed power than two smaller wind turbines.

The link is from the-most-solarpunk-website and is mostly about steel in general, but I wanted to pull out that one fact.

Wind and solar energy are not “good for the environment”; they pollute; it’s just that we hope they pollute less than the alternative. One major reason they pollute is because they require a lot of steel to build. But the household-scale or village-scale ones use less

de Decker is citing: Topham, Eva, et al. “Recycling offshore wind farms at decommissioning stage.” Energy policy 129 (2019): 698-709.

  • Sonori@beehaw.org
    link
    fedilink
    arrow-up
    6
    ·
    edit-2
    4 months ago

    Precisely, good stable wind blowing when we need power is not something we have an unlimited amount of, like times we can recycle steel. The steel in todays wind turbine is the steel in a thousand years from now’s turbine, where as the co2 that got pumped into the atmosphere because that turbine wasn’t enough is also the co2 killing people in a thousand years. The higher you get a turbine above the ground, the less turbulence it will see, and the more constantly it will be in the right range to generate power.

    The more you can count on it, the less battery and hydro you need to cover when the winds not blowing, and thusly the less space and turbines you need.

    As for labor efficiency, i’ve always though of the goal of solarpunk to be a world where we’ve settled out into a way of life that can be maintained long term and where people are free to do what they want and help out where they can instead of worrying about if they’ll earn enough from the megacorp to have heat and food next month.

    While you still need someone to do dangerous and unpleasant things like climbing turbines, ideally you’re only asking as few people as possible to do so as you need.

    And given that even in that future people will still be paying the price in lives for the GHGs we emit today, we owe it to them and possibly us if we live long enough to shrink the river of co2 we’re putting out as fast as we can, as every fossil plant that is replaced by clean energy today is decades of that’s plants cost gone.

    • frightful_hobgoblin@lemmy.mlOP
      link
      fedilink
      arrow-up
      1
      ·
      4 months ago

      The steel in todays wind turbine is the steel in a thousand years from now’s turbine, where as the co2 that got pumped into the atmosphere because that turbine wasn’t enough is also the co2 killing people in a thousand years

      FYI making steel emits carbon: kinda the main point of the article.

      • Sonori@beehaw.org
        link
        fedilink
        arrow-up
        4
        ·
        3 months ago

        No shit, in a fossilized economy everything emits carbon, and low co2 new steel production is still in its infancy. Nevertheless it emits far, far less carbon than running a natural gas plant for the same power, and as the article points out, can and is continually reused forever with no new carbon emissions beyond that of the enegy used to transport the material and power the arc furnace.

        The startup cost in carbon just means there is a delay in between when a turbine is built, and when it is produceing zero carbon energy. Studies show that even the most steel intensive offshore turbines repay this debt in under a year, and again, this is why we need to be getting as much wind energy online as soon as possible.

        If going to a smaller turbine design means that you save four months worth of startup carbon, but means a wind farm only captures two thirds as much wind energy over its three hundred month design lifespan then going with the smaller design will have effectively cost nearly a hundred months worth of output to save four. While that two thirds number is going to very by project constraints, the reduction doesn’t need to be very large to work out to a net carbon savings, even if you couldn’t recycle steel at all.

        As things like available project land, projected ongoing maintenance budget, and most often capital availabllity ultimately constrain a given projects size and net generating capacity, it makes sense to go for the larger turbines that more efficiently make use of these limited resources, instead of the practically unlimited in this context supply of steel.

        In short, optimizing for steel use is effectively producing kilotons of ongoing co2 emissions to save tons of co2 once.